NONLINEAR OSCILLATOR UNDER EXTERNAL ASYNCHRONOUS INFLUENCE: COMPARISON OF CANONICAL AND NON-CANONICAL PERTURBATION METHODS OF ANALYSIS ${ }^{+ \text {) }}$

Vladimir Damgov* and Petar Georgiev**
* Space Research Institute-Bulgarian Acadeny of Sciences;
** Department of Physicr at the Technical University-Vama

Abstract

A non-canonical (non-Hamillonian) perturbation method for study of nonlinear oscillator under external asynchronous action in variables "energy-angle" is presented. As new variables, the iteration constants of the original solution are introduced. Consistently applying the method of canonicul transformations and producing functions, a canonical approach in "action-angle" variables is developed for analysis of the same system under similar conditions. Doth approaches are characterized by the transition, in the very beginning, to functions with constunt period and only then the necessary functional matrices are introduced. The same problem is sudied by Kuzmak's melhod, characterized by the opposite approach: first, a functional square matrix is introduced, and only then a iransition to functions with a constant period is made. A comparison of the results obtained using the three above-mentioned methods and approaches is made. It is shown that the solutions in the first approximation lead to equal resuits. In particular, this conclusion is a contribution to the idea that there is no essential difference between non-canonical (nonHomiltonian) and canonical (Homiltonan) methods. However, attention is drawn to the fact that the other analytical methods developed in the frame of the Theory of Nonlinear Oscillations could not give, even in the first approximations, a complete coincidence with the solution obtained using the three above-mentioned methods.

The analysis of oscillations and vibrations reduces to the problem of a monlinear oscillator, subjected to external periodic influence (perturbation). With the development of perturbation methods, two main directions have formed: canonical (Hamiltonian) mothods and noncanonical (non-Hamiltonian) methods.

[^0]The methods using mainly canonical transformations in action-angle variable developed earlier. This was in response to the needs of colestiat mechanics - see [1]. The method of Lindstedt-Poincare as well as other methods were developed. The second direction of development of the perturbation methods are the methods of the averaged Lagrangian and the averaged Hamiltonian [2]. An overview and a modern presentation of the canonical methods are given in [3-5].

In the first half of the twenticth century, mainly the non-canonical (non-Hamitonian) perturbation methods were developed for the purpose of analysis of nonlinear electric circuits $\{6-9$. M. Kruskal has developed a noncanonical theory showing that it can be equivalent to the canonical theory [10]. The development of these methods is reflected in [4, 11-13].

In the application of perturbation and in particular of the asymptotic methods a transformation is made to a generating solution with constant period $P_{o}=2 \pi$. A number of methods have been developed for this purpose. In the casc of non-canonical methods, the integration constants of the generating solution serve as the new variables while in the case of the canonical methods with the aid of a canonical transformation the treatment is done in action-angle variables (these two approachos are uscd below). A third possible method is the regularized Euler method introducing a new independent variable [14-16]. Aftcr the transformation the gencrating (nonperturbed) cquation coincides with the equation of the harmonic oscillator. K.A.Samoylo has suggested the so-called method of non-lincar transformation employing the transformation of the dependent (coordinate) as well as the independent (time) variables. In this case the gencrating cquation again coincides with the equation of the harmonic oscillator. Finally, a method has been developed in which the generating solution has a variable period (dependent on the amplitude). In this case the solution of the variation equation contains secular terms which at a later stage are compensated. This method is by G.E. Kurmak [18] and has been further developed in a number of works, i.e. [19-23].

We should also mention a number of modifications of the perturbation methods used for analysis of non-linear waves as well as a number of perturbation methods based on conservation laws. In the analysis of solution phenomena perturbation methods are used which based on the Inverse Scattering Mcthod (ISM) for equations such as the Korteweg-dcVries, the Sine-Gordon, the non-lincar Schroedinger equation etc. [26,27].

The present wotk compares the results obtained through different pertarbation methods. It is shown that the solutions using energy-angle variables and action-angle variables (via canonical transformations) and by Kuzmak's method to first approximation lead to equivalent resuits. This
confirms the idea that between the canonical and the non-canonical perturbation methods used in particular for the analysis of an asynchronous oscillator there isn't any principal difference.

1. Generating solution

Let us consider a generalized nonlinear oscillator deseribed by the following system of equations:

$$
\left\lvert\, \begin{align*}
& \frac{d x}{d t}-p=0 \tag{1}\\
& \frac{d p}{d t}+f(x, T)=\mu F_{v}\left(\frac{d x}{d t}, x, t, T\right)
\end{align*}\right.
$$

where $0 \leq \mu \ll 1$ is a small parameter, T is secondary scaling/slow time/, $T=T_{o}+\mu t, T_{o}=$ const, $d T / d t=\mu$. The secondary scaling (slow time) could represent the slow change of the oscillator parameters: i.e. modulation of the oscillator inductance or capacity, a drift in the supplied power etc. We will take $f(0, T)=0$. We will seek a solution of equation (1) for x belonging to the interval satisiying $x f(x, T) \geq 0$.

The solution of the system of equations (1) for $\mu \equiv 0$ represents the so called generating solution which we will represent as:

$$
\begin{equation*}
X=X_{u}\left(E, t+t_{\theta}, T\right), \quad p=p_{a}\left(E, t+t_{a}, T\right), \tag{2}
\end{equation*}
$$

Here $E=$ const and $t_{o}=$ const are the constants of integration.
We introduce a circular frequency into the generating solution (2), as follows:

$$
\omega(E, T)=\frac{2 \pi}{\Pi(E, T)}, \quad \text { where } \quad \Pi(E, T)=2 \int_{x_{\min } x}^{x_{\max }} \frac{d x}{\sqrt{2 E-V(x, T)}}
$$

is the period in time t and $V(x, T)=\int_{0}^{x} \sqrt{f\left(x^{\prime}, T\right) d x^{\prime}}$ is the potential energy,

$$
V\left(x_{\min }, T\right)=V\left(x_{\max }, T\right)=E(T)
$$

An angle variable Ψ and an integration constant $\alpha=$ const are introduced through the expressions: $t=\frac{\Psi}{\omega(E, T)}, \quad t_{o}=\frac{\alpha}{\omega(E, T)}$.

Let $\theta=\Psi+\alpha$. We introduce the new functions:

$$
\left\lvert\, \begin{align*}
& x=x_{b}(E, \theta, T)=x_{a}\left(E, \frac{\theta}{\omega(E, T)}, T\right) \tag{3}\\
& p=p_{b}(E, \theta, T)=p_{a}\left(E, \frac{\theta}{\omega(E, T)}, T\right)
\end{align*}\right.
$$

which are periodic in Ψ and θ with period $p_{0}=2 \pi$, independent of E . Therefore the derivatives $\partial x_{b} / \partial \theta, \partial p_{b} / \partial \theta, \partial x_{b} / \partial E$ and $\partial p_{b} / \partial E$ are periodic, i.e. they do not contain secular terms.

The system ol equations (1) takes the form:

$$
\left\lvert\, \begin{align*}
& \omega(E, T) \frac{\partial x_{b}(E, \theta, T)}{\partial \theta}-p_{b}(E, \theta, T)=0, \tag{4}\\
& \omega(E, T) \frac{\partial p_{b}(E, \theta, T)}{\partial \theta}+f\left(x_{b}, T\right)=0,
\end{align*}\right.
$$

or

$$
\mathbf{Y}\left[\begin{array}{c}
0 \tag{5}\\
\omega
\end{array}\right]+\left[\begin{array}{c}
-p_{b} \\
f\left(x_{b}, T\right)
\end{array}\right]=0
$$

where

$$
\mathbf{Y}(E, \theta, T)=\left[\begin{array}{ll}
\frac{\partial x_{b}(E, \theta, T)}{\partial E} & \frac{\partial x_{b}(E, \theta, T)}{\partial \theta} \tag{6}\\
\frac{\partial p_{b}(E, \theta, T)}{\partial E} & \frac{\partial p_{b}(E, \theta, T)}{\partial \theta}
\end{array}\right] .
$$

The matrix Y is periodic as the period $p_{0}=2 \pi$ is constant and it satisfies the condition for the absencc of secutar terms.
2. Perturbation in energy-angle variables

We now perturb equation (1) at $\mu \neq 0$. We vary the constant parameters taking $E=E(t)$ and $\alpha=\alpha(t)$.

Taking into account (4) we obtain the following system of equations, equivalent to system (1):

$$
\begin{align*}
& \frac{d \Psi}{d t}=\omega(E, T) ; \quad \theta(t)=\Psi(t)+\alpha(t) \tag{7}\\
& {\left[\begin{array}{l}
\frac{d E}{d t} \\
\frac{d \theta}{d t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\omega(E, T)
\end{array}\right]+\mu\left[\begin{array}{l}
G_{r}(E, \theta, t, T, \mu) \\
G_{s}(E, \theta, t, T, \mu)
\end{array}\right]} \tag{8}
\end{align*}
$$

wherc $\left[\begin{array}{l}G_{r} \\ G_{s}\end{array}\right]=\mathbf{Y}-1\left[\begin{array}{c}-\frac{\partial x_{b}}{\partial T} \\ -\frac{\partial p_{b}}{\partial T}+F_{r}\end{array}\right]$.

Here, the inverse matrix $\mathbf{Y}-1=\left[\begin{array}{cc}f\left(x_{b}, T\right) & p_{b} \\ \omega \frac{\partial p_{b}}{\partial E} & -\omega \frac{\partial x_{b}}{\partial E}\end{array}\right]$ and correspondingly $\operatorname{det} \mathbf{Y}=-1 / \infty$, i.c. the condition for the application of the perturbation approach, $\operatorname{det} \mathbf{Y} \neq 0, \infty$ is valid.

We will scek the solution (7) in the form of an asymptotic series:

$$
\left\lvert\, \begin{align*}
& E(t)=E_{o}(t)+\mu E_{1}(t)+\mu^{2} E_{2}(t)+\ldots \tag{9}\\
& \theta(t)=\theta_{o}(t)+\mu \theta_{1}(t)+\mu^{2} \theta_{2}(t)+\ldots
\end{align*}\right.
$$

Substituting (9) into (8), cxpanding in the powers of μ and equating the cocfficients multiplying the same powers of μ^{k}, we obtain:

$$
\left[\begin{array}{c}
\frac{d E_{k}}{d t} \tag{10}\\
\frac{d \theta_{k}}{d t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\delta_{k}
\end{array}\right]+\left[\begin{array}{c}
G_{r, k} \\
G_{s, k}
\end{array}\right], \quad \quad \mathrm{k}=0,1,2,3, \ldots
$$

wherc δ_{k} reffects the necessary corrections to ω due to different order of approximation for E in $\alpha(E, T)$, i.e.:

$$
\begin{aligned}
& \mu^{k} \delta_{k}=\omega\left(E_{o}+\mu E_{1}+\ldots+\mu^{k-1} E_{k-1}+\mu^{k} E_{k}, T\right)-\omega\left(E_{o}+\mu E_{1}+\ldots+\mu^{k-1} E_{k-1}, T\right. \\
& G_{r, k}=\hat{G}_{r, k}\left(E_{o}, E_{1}, \ldots, E_{k, 1}, \theta_{n}, \theta_{1}, \ldots, \theta_{k-1}, T\right) \\
& G_{s, k}=\hat{G}_{s, k}\left(E_{0}, E_{1}, \ldots, E_{k-1}, \theta_{o}, \theta_{1}, \ldots, \theta_{k-1}, T\right)
\end{aligned}
$$

Here $\hat{G}_{r, k}$ and $\hat{\boldsymbol{G}}_{s, k}$ are differential operators which are applied to the obtained in the previous steps functions.

The complete determination of E_{k} is possible only when the cocfficients of order μ^{k+1} are taken into account. The correction δ_{k} (10) contains E_{k}. This is why we solve the equation E_{k} simultaneously with the equation for θ_{k-1}, i.c. instcad of solving (10) we should solve the system of equations:

$$
\left\lvert\, \begin{aligned}
& \frac{d E_{k}}{d t}=G_{r, k}\left(E_{o}, E_{1}, \ldots, E_{k-1}, \theta_{o}, \theta_{1}, \ldots, \theta_{k-1}, t, T\right) \\
& \frac{d \theta_{k-1}}{d t}=\delta_{k-1}+G_{r, k-1}\left(E_{o}, E_{1}, \ldots, E_{k-2}, \theta_{o}, \theta_{1}, \ldots, \theta_{k-2}, t, T\right)
\end{aligned}\right.
$$

In (9) we do the following substitution:

$$
\left\lvert\, \begin{align*}
& E_{k}(t)=L_{k}(t)+U_{r k}(t, T) \tag{11}\\
& \theta_{k}(t)=\alpha_{k}(t)+U_{s k}(t, T), \\
& \frac{d \alpha_{k}(t)}{d t}=\omega_{k}(T)
\end{align*} \quad \mathrm{k}=1\right.,2,3, \ldots
$$

where $U_{r o}=0, U_{s o}=0$. This representation takes into account that E is a slow variable while θ is a quick variable. The quantity $L_{k}(t)$ is obtained oniy when the coefficients of order μ^{k+1} are considered.

Taking into account equation (11) the perturbation approach reduces equation (10) to:

$$
\left\lvert\, \begin{align*}
& \frac{d L_{k-1}(T)}{d T}+\frac{\partial U_{r k}(t, T)}{\partial t}=G_{r k}(t, T) \tag{12}\\
& \omega_{k}(T)+\frac{\partial U_{s k}(t, T)}{\partial t}=\delta_{k}(t, T)+G_{s k}(t, T)
\end{align*}\right.
$$

We assume that the right-hand sides of (12) are expressed in functions the form of which was found in the previous steps.

From the condition of periodicity of U_{rk} and U_{sk} it follows that:

$$
\left\lvert\, \begin{align*}
& \frac{d L_{k-1}(T)}{d T}=\left\langle G_{r k}\right\rangle_{t} \tag{13}\\
& \omega_{k}(T)=\left\langle\delta_{k}+G_{s k}\right\rangle_{t}
\end{align*}\right.
$$

where $\left\rangle_{\text {l }}\right.$ means averaging with respect to time.
From (12) $L_{k-I}(T)$ and $\omega_{k}(T)$ are determined. Then we find U_{rk}, U_{sk} from the following system of equations:

$$
\left\lvert\, \begin{aligned}
& \frac{\partial U_{r k}(t, T)}{\partial t}=G_{r k}(t, T)-\left\langle G_{r k}\right\rangle_{t} \\
& \frac{\partial U_{s k}(t, T)}{\partial t}=\delta_{k}(t, T)-G_{s k}(t, T)-\left\langle\delta_{k}+G_{s k}\right\rangle_{t}
\end{aligned}\right.
$$

We should at this point note that instead of t we can use Ψ as an independent variable. In the case the system of equations (7) and (8) is equivalent to:

$$
\begin{equation*}
\frac{d t}{d \Psi^{\prime}}=\frac{1}{\omega(E, T)} \tag{14}
\end{equation*}
$$

$$
\left[\begin{array}{l}
\frac{d E}{d \Psi} \tag{15}\\
\frac{d \theta}{d \Psi}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\mu\left(\frac{1}{\omega}\right) \mathbf{Y}-1\left[\begin{array}{c}
-\frac{\partial x_{b}}{\partial T} \\
-\frac{\partial p_{b}}{\partial T}+F_{v}
\end{array}\right]
$$

The described above perturbation method can be used for the analysis of cquations (14) and (15).

3. Perturbation in action-angle variables

Above we found a solution in cnergy-angle variables (E, θ). The crucial step was the treatment in variables $x_{b}(E, \theta, T)$ and $p_{b}(E, \theta, T)$, having a constant period $p_{o}=2 \pi$ with respect to the angle (quick) variable θ. Here instead of energy E we will use the action I. Our goal is to transform canonically in such a way that the new action $I \equiv \bar{p}=$ const to be a constant while the now coordinate $\Psi \equiv \bar{X}$ is lincar in time.

For the case in consideration the generating equation can be represented with the canonical equations of Hamilton:

$$
\begin{equation*}
\frac{d x}{d t}=\frac{\partial H}{\partial p}=P ; \quad \frac{d P}{d t}=-\frac{\partial H}{\partial x}=-\frac{\partial V}{\partial x}=-f(x, T) \tag{16}
\end{equation*}
$$

For the transition to action-angle variables and the achievement of the sct above goal we introduce the gencrating function $W\left(x_{i}, T, T\right)$ such that:

$$
\begin{aligned}
& P=\frac{\partial W(x, I, T)}{\partial t}, \quad \Psi=\frac{\partial W(x, I, T)}{\partial I} \\
& W(x, I, T)= \pm \int_{0}^{x} \sqrt{2 E(I, T)-2 V\left(x^{\prime}, T\right)} d x^{\prime}
\end{aligned}
$$

Then the new Hamiltonian is:
$\bar{H}(I, \Psi, T)=\bar{H}(I, T)=H(P, x, T)=E(T)$, where $E(T)$ is the energy integral, $E(T)=p^{2} / 2+\mathrm{V}(\mathrm{x}, \mathrm{T})$.

The period in Ψ must be a constant and equal to 2π. The circular frequency in the generating solution is:
(17) $\quad \omega_{\mathrm{c}}(I, T)=\partial \Psi / \partial t=2 \pi / \Pi[E(I, T), T]$,
where the period in time $t=\Psi / \omega_{c}$ is:

$$
\Pi(E, T)=2 \pi \frac{\partial(E, T)}{\partial E}=2 \frac{\partial}{\partial E} \int_{\min x}^{\max x} \sqrt{2 E-2 V(x, T)} d x
$$

We introduce the new functions:

$$
\begin{align*}
& x=x_{c}(I, \theta, T)=x_{b}[E(I, T), \theta, T] \tag{18}\\
& p=p_{c}(I, \theta, T)=p_{b}[E(I, T), \theta, T]
\end{align*}
$$

Taking into account (16)-(18), the system of equations (1) takes the form:

$$
\begin{aligned}
& \omega_{c}(I, T)\left[\frac{\partial x_{c}(I, \theta, T)}{\partial \theta}\right]-p_{c}(I, \theta, T)=0 \\
& \omega_{c}(I, T)\left[\frac{\partial p_{c}(I, \theta, T)}{\partial \theta}\right]+f\left(x_{c}, T\right)=0
\end{aligned}
$$

or

$$
\mathbf{Z}\left[\begin{array}{c}
0 \tag{19}\\
\omega_{c}
\end{array}\right]+\left[\begin{array}{c}
-p_{c} \\
f\left(x_{c}, T\right)
\end{array}\right]=0
$$

where $\mathbf{Z}_{(I, \theta, T)}=\left[\begin{array}{l}\frac{\partial x_{c}(I, \theta, T)}{\partial I} \\ \frac{\partial x_{c}(I, \theta, T)}{\partial \theta} \\ \frac{\partial p_{c}(I, \theta, T)}{\partial I} \\ \frac{\partial p_{c}(I, \theta, T)}{\partial \theta}\end{array}\right]$.
We seck the solution of the perturbed system of equations (1) by varying the constant parameters $I=I(t)$ and $\alpha=\alpha(t)$ as:

$$
\left\lvert\, \begin{align*}
& x=x_{c}[I(t), \Psi(t)+\alpha(t), T] \tag{20}\\
& p=p_{c}[I(t), \Psi(t)+\alpha(t), T] \\
& \frac{d \Psi}{d t}=\omega_{c}[I(t), T] \quad \theta(t)=\Psi(t)+\alpha(t)
\end{align*}\right.
$$

Substituting (20) in (1) and taking into consideration (19) we obtain:

$$
\left[\begin{array}{c}
\frac{d I}{d t} \tag{21}\\
\frac{d \theta}{d t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\omega_{c}(I, T)
\end{array}\right]+\mathbf{Z}^{-1}\left[\begin{array}{c}
-\mu \frac{\partial x_{c}(I, \theta, T)}{\partial T} \\
-\mu \frac{\partial p_{c}(I, \theta, T)}{\partial T}+\mu F_{v}
\end{array}\right]
$$

where $\mathbf{Z}^{-1}=\left[\begin{array}{cc}\frac{1}{\omega_{c}} f\left(x_{c}, T\right) \frac{1}{\omega_{c}} p_{c} \\ \frac{\partial p_{c}}{\partial I} & -\frac{\partial x_{c}}{\partial I}\end{array}\right], \operatorname{det} \mathbf{Z}=-1$.
The sysicm (21) can be expressed as:

$$
\left[\begin{array}{l}
\frac{d I}{d t} \tag{22}\\
\frac{d \theta}{d t}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\delta
\end{array}\right]+\left[\begin{array}{c}
G_{v}(I, \theta, t, T, \mu) \\
G_{w}(I, \theta, t, T, \mu)
\end{array}\right]
$$

where δ is the necessary adjustment of ω_{c}.
We scek the solution of (22) in the form:

$$
\left\lvert\, \begin{align*}
& I=I_{o}(T)+\mu\left[I_{1}(T)+U_{v 1}(t, T)\right]+\mu^{2}\left[I_{2}(T)+U_{v_{2}}(t, T)\right]+\ldots \tag{23}\\
& \theta=\theta_{o}(T)+\mu\left[\theta_{1}(T)+U_{w t}(t, T)\right]+\mu^{2}\left[\theta_{2}(T)+U_{w 2}(t, T)\right]+\ldots \\
& \delta=\mu \delta_{1}+\mu^{2} \delta_{2}+\mu^{3} \delta_{3}+\ldots \\
& \frac{d \theta_{o}(t)}{d t}=\omega_{o}(T) ; \quad \frac{d \theta_{1}(t)}{d t}=\omega_{1}(T) ; \quad \frac{d \theta_{2}(t)}{d t}=\omega_{2}(T) ; \ldots
\end{align*}\right.
$$

wherc $U_{\mathrm{Vk}}(t, T)$ and $U_{\mathrm{wk}}(t, T)$ do not contain secular terms, i.c.

$$
\begin{equation*}
\left.\left\langle\frac{\partial}{\partial t} U_{v k}(t, T)\right\rangle_{t}=0, \quad \frac{\partial}{\partial t} U_{w k}(t, T)\right\rangle_{t}=0, \quad k=1,2,3, \ldots \tag{24}
\end{equation*}
$$

Substituting (23) in (22), developing in a series in the powers of μ and equating the coefficients multiplying the same powers of μ^{k} we get:

- in front of μ°
$\frac{d \theta_{o}(t)}{d t}=\omega_{o o}(T)$, where $\omega_{\infty}(T)=\omega_{C_{0}}\left(I_{o o^{\prime}} T\right)$ the initial value $I_{o c}$ is taken at the moment $\mathrm{t}=0$, i.e.
or

$$
\begin{aligned}
& I_{o o}=\left.I(T)\right|_{t=0} \\
& \theta_{n}(t)=\int_{0}^{t} \omega_{c}\left(I_{o o}, T+\mu t^{t}\right) d t^{\prime}+\text { const }
\end{aligned}
$$

- in front of μ^{i}

$$
\begin{align*}
& \frac{d I_{o}(T)}{d T}+\frac{\partial U_{v 1}(t, T)}{\partial t}=G_{\mathrm{v}}\left(I_{o}(T), \theta_{o}(T), t, T, 0\right) \tag{25}\\
& \omega_{1}(T)+\frac{\partial U_{v i n}(t, T)}{\partial t}=\delta_{1}+G_{w}\left(I_{o}(T), \theta_{o}(T), t, T, 0\right) \tag{26}
\end{align*}
$$

and accordingly

$$
\begin{aligned}
& \delta_{1}=\left[\frac{\omega_{c}\left(I_{o}(T), T-\omega_{c}\left(I_{o o}, T\right)\right.}{\mu}\right] \\
& \delta_{2}=\left[\frac{\omega_{c}\left(I_{o}(T)+\mu I_{1}(T)+\mu U_{\nu_{1}}(t, T)\right)-\omega_{c}\left(I_{o}(T), T\right)}{\mu^{2}}\right]
\end{aligned}
$$

etc.
Averaging the two sides of (25) and (26) and taking into account (24) we obtain:

$$
\begin{equation*}
\frac{d I_{o}(T)}{d T}=\left\langle G_{v}\left[I_{o}(T), \theta_{\alpha}(T), t, T, 0\right]\right\rangle_{i} \tag{27}
\end{equation*}
$$

$$
\begin{align*}
& \omega_{1}(T)=\left\langle G_{w i}\left[I n(T), \theta_{n}(T), t, T, 0\right]+\delta_{1}\right\rangle_{t} \\
& \theta_{1}(t)=\int_{0}^{t} \omega_{1}\left(T_{o}+\mu t^{\prime}\right) d t^{\prime}+\text { const } \tag{28}
\end{align*}
$$

The differential equation (26) can be resolved, i.e. through successive approximations and development of T in a power series. The determined by (27) quantity $I_{0}(\Psi)$ is then substitutcd in (28).

So, we have come on the approximation as follows:

$$
\left[\begin{array}{l}
\left\langle\frac{d I}{d t}\right\rangle_{t} \tag{29}\\
\left\langle\frac{d \theta}{d t}\right\rangle_{t}
\end{array}\right]^{2}=\left[\begin{array}{c}
0 \\
\omega_{o}
\end{array}\right]+\mu\left\langle\mathbf{Z}^{-1}\left[\begin{array}{c}
-\frac{\partial x_{c}}{\partial T} \\
-\frac{\partial p_{c}}{\partial T}+\mu F_{v}
\end{array}\right]\right\rangle
$$

where $\left[\omega_{0}=\omega_{c}\left[I_{0}(T), \mathrm{T}\right]=\omega_{00}+\mu \delta_{1}\right.$

Then

$$
U_{v 1}(t, T)=\int_{0}^{t}\left[G_{v 1}-\left\langle G_{\nu 1}\right\rangle_{t}\right]_{d t^{\prime}+\text { const }}
$$

$$
U_{w 1}(t, T)=\int_{0}^{t}\left[G_{w 1}+\delta_{1}-\left\langle G_{w 1}+\delta_{1}\right\rangle_{t}\right] d t^{\prime}+\text { const }
$$

4. Solution by Kuzmak's method in matrix form

In the two methods developed above we first transformed to functions with a constant period $p_{o}=2 \pi$ and only then introduced matrices \mathbf{Y} and \mathbf{Z}. This is why \mathbf{Y} and \mathbf{Z} turned out to be periodic. With Kuzmak's method [18] one proceeds in the reverse order: first, the functional square matrix Ξ is introduced and only then the transformation to constant period functions is performed. As a result, \bar{E} is not periodic but contains secular terms. In the analysis of the perturbed equation these terms compensate each other and the final solution is periodic. Here, we will develop a version of Kuzmak's method on the basis of a matrix presentation in application to an asynchronous non-lincar osciliator.

The generating solution of the system of equations (1) when $\mu \equiv 0$ is assumed to be in form (2).

We introduce the matrix:

$$
\Xi\left(E, t+t_{0}, T\right)=\left[\begin{array}{ll}
\frac{\partial x_{a}\left(E, t+t_{0}, T\right)}{\partial E} & \frac{\partial x_{a}\left(E, t+t_{o}, T\right)}{\partial\left(t+t_{0}\right)} \tag{30}\\
\frac{\partial p_{a}\left(E, t+t_{o}, T\right)}{\partial E} & \frac{\partial p_{a}\left(E, t+t_{o}, T\right)}{\partial\left(t+t_{0}\right)}
\end{array}\right],
$$

so that the following variation equation is satisfied:

$$
\frac{\partial \Xi}{\partial t}+\mathbf{B} \Xi=0, \text { where } \mathbf{B}=\left(\begin{array}{cc}
0 & -1 \tag{31}\\
\frac{\partial f}{\partial x_{0}} & 0
\end{array}\right)
$$

Besides

$$
\begin{equation*}
\Xi=\mathrm{Y} \mathrm{H}\left[1-\left(t+t_{o}\right) \mathrm{Q}\right], \tag{32}
\end{equation*}
$$

$$
\mathbf{H}=\left[\begin{array}{cc}
1 & 0 \\
0 & \omega
\end{array}\right] \quad \mathbf{Q}=\left[\begin{array}{cc}
0 & 0 \\
\frac{\partial \ln \Pi(E, T)}{\partial E} & 0
\end{array}\right]
$$

Then det $\Xi=-1$ and $\Xi^{-1}\left(E, t+t_{o}, T\right)=\left[1+\left(t+t_{o}\right) \mathbf{Q}\right] \mathbf{H}^{-1} \mathbf{Y}^{-1}$.
The solution of the perturbed system of equations (1) we scek in the form:

$$
\left\lvert\, \begin{aligned}
& x=x_{b}[E(T), \Psi(t)+\alpha(T), T]+\mu U_{1 a}(t, T) \\
& p=p_{b}[E(T), \Psi(t)+\alpha(T), T]+\mu U_{2 a}(t, T)
\end{aligned}\right.
$$

where the constant parameters $\Psi, \mathrm{E}, \alpha, \theta$, and $\mathrm{d} \Psi / \mathrm{dt}=\omega(\mathrm{E}, \mathrm{T})$ are varied. We lay down conditions $U_{1 a}$ and $U_{2 a}$ not to contain secular terms.

The following equation is satisfied:

$$
\left[\begin{array}{l}
\frac{d x}{d t} \\
\frac{d p}{d t}
\end{array}\right]=\left[\begin{array}{l}
\omega \frac{\partial x_{b}}{d \theta} \\
\omega \frac{d p_{b}}{d \theta}
\end{array}\right]+\mu \mathbf{Y}\left[\begin{array}{l}
\frac{d E}{d T} \\
\frac{d \alpha}{d T}
\end{array}\right]+\mu\left[\begin{array}{l}
\frac{\partial x_{b}}{d T}+\frac{\partial U_{1 a}}{\partial t}+\mu \frac{\partial U_{1 a}}{\partial T} \\
\frac{\partial p_{b}}{d T}+\frac{\partial U_{2 a}}{\partial t}+\mu \frac{\partial U_{2 a}}{\partial T}
\end{array}\right]
$$

We also introduce the matrix:

$$
\mathrm{U}_{\mathrm{a}}(t, T)=\left[\begin{array}{l}
\mathrm{U}_{\mathrm{a} 1}(t, T) \\
\mathrm{U}_{\mathrm{a} 2}(t, T)
\end{array}\right]
$$

We seek the solution in the form of an asymptotic series:

$|$| $\Psi(t)=\Psi_{0}(t)+\mu \Psi_{1}(t)+\mu^{2} \Psi_{2}(t)+\ldots$ |
| :--- |
| $\alpha(T)=\alpha_{0}(T)+\mu \alpha_{1}(T)+\mu^{2} \alpha_{2}(T)+\ldots$ |
| $\theta(t, T)=\theta_{0}(t, T)+\mu \theta_{1}(t, T)+\mu^{2} \theta_{2}(t, T)+\ldots$ |
| $\theta_{k}(t, T)=\varphi_{k}(t)+\alpha_{k}(t), \quad k=0,1,2, \ldots$ |
| $E(T)=E_{0}(T)+\mu E_{1}(T)+\mu^{2} E_{2}(T)+\ldots$ |
| $\mu U_{a}(t, T)=\mu U_{1}(t, T)+\mu^{2} U_{2}(t, T)+\ldots$ |
| $U_{k}(t, T)=\left[\begin{array}{c}U_{k 1}(t, T) \\ U_{k 2}(t, T)\end{array}\right], \quad k=1,2,3, \ldots$ |

We set as a goal that $U_{k 1}, U_{k 2}$ must not contain secular terms.
The generating solution has the form (5).

Substituting (33) in (1) and taking (5) into account developing in a series in the powers of μ and equating the coefficients multiplying the same powers of μ^{k}, we get:

- in front of μi°

$$
\begin{align*}
& \frac{\mathrm{d} \Psi_{0}(\mathrm{t})}{\mathrm{dt}}=\omega\left(E_{o,}, T\right) \tag{34}\\
& \mathrm{d} \Psi_{0}=\int_{0}^{t} \omega\left(E_{o o}, T_{0}+\mu t^{\prime}\right) \mathrm{d} t^{\prime}
\end{align*}
$$

wherc $E_{O O}$ is the initial value of $E_{o}(T)$ at the moment $t=0$ and when $T=$ $T_{0} ;$

- in front of μ^{k}

$$
\begin{equation*}
\frac{\boldsymbol{\partial}_{k}(t, T)}{\partial t}+\mathrm{BU}_{k(t, T)}=\boldsymbol{\Phi}_{k} ; \quad k=1,2,3, \ldots \tag{35}
\end{equation*}
$$

where

$$
\Phi_{k}=\operatorname{col}\left(\Phi_{k_{1}}, \Phi_{k 2}, \frac{d \Psi_{k}(t)}{d t}=\delta_{k}\left(T_{o}+\mu t\right), \quad k=1,2,3, \ldots\right.
$$

$$
\begin{equation*}
\Psi_{k}(t)=\int_{0}^{t} \delta_{k}\left(T+\mu t^{\prime}\right) d t^{\prime} \tag{36}
\end{equation*}
$$

δ_{k} are the necessary adjustments of ω

$$
\delta_{1}\left(T_{o}+\mu t\right)=\delta_{1}(T)=\frac{\omega\left[E_{o}(T), T\right]-\omega\left[E_{o o}, T\right]}{\mu}
$$

$\delta_{k}\left(T_{o}+\mu\right)=\delta_{k}(T)=\frac{\left.\omega\left|E_{o}(T)+\mu E_{1}(T)+\ldots+\mu^{k-1} E_{k \cdot 1}(T)\right|-\omega \mid E_{o}(T)+\mu E_{1}(T)+\ldots+\mu^{k \cdot 2} E_{k-2}(T)\right]}{\mu^{k}}$
k=2,3,4,....
In particular, for the coefficient multiplying μ^{1} we obtain:

$$
\frac{\partial \mathrm{U}_{\mathrm{i}}(t, T)}{\partial t}+\mathrm{BU}_{1}(t, T)=\Phi_{1}
$$

where

$$
\mathbf{\Phi}_{1}=-\mathbf{Y}\left[\begin{array}{c}
\frac{d E_{o}(T)}{d T} \tag{37}\\
\frac{d \alpha(T)}{d T}
\end{array}\right]+\left[\begin{array}{c}
-\frac{\partial x_{b}}{\partial T} \\
-\frac{\partial p_{b}}{\partial T}+F_{v}
\end{array}\right]
$$

Here $F=F\left(\frac{d x_{b}}{d t}, x_{b}, t, T, 0\right)$.
We seek the solution of equation (35) in the form:

$$
\begin{equation*}
\mathbf{U}_{\mathrm{k}}(t, T)=\Xi \mathrm{V}_{\mathrm{k}}(t, T), \quad k=1,2,3, \ldots \tag{38}
\end{equation*}
$$

$$
\mathbf{V}_{k}(t, T)=\left[\begin{array}{c}
V_{k 1}(t, T) \\
V_{k 2}(t, T)
\end{array}\right], \quad k=1,2,3, \ldots
$$

Substituting (38) into (35) and taking (31) into account we get:

$$
\begin{equation*}
\mathbf{V}_{k}(t, T)=\mathbf{V}_{k}(0, T)+\int_{0}^{t} \Xi^{-1}\left(E, t^{\prime}+t^{\prime \prime}, T\right) \Phi\left(t^{\prime}, T\right) d t^{\prime} \tag{39}
\end{equation*}
$$

From equation (14) it follows:

$$
\begin{align*}
& \mathbf{V}(t, T)=\mathbf{V}(0, T)+\int_{0}^{t}\left[1+\left(t^{\prime}+t_{o}\right) \mathbf{Q}\right] \mathbf{H}^{-1} \mathbf{Y}^{-1} \Phi d t^{\prime} \tag{40}\\
& =\mathbf{V}(0, T)+\int_{0}^{t}\left[1+\left(t^{\prime}+t_{o}\right) \mathbf{Q}\right]\left\{\frac{\partial}{\partial t^{\prime}}\left[\mathrm{K}_{1}+\mathbf{D}(T) t^{\prime}\right]\right\} d t^{\prime}
\end{align*}
$$

where matrices $\mathbf{D}(\mathrm{T})$ and \mathbf{K}_{1} have been introduced through the refations:

$$
\begin{align*}
& \mathrm{D}(T)=\left\langle\mathrm{H}^{-1} \mathrm{Y}^{-1} \Phi\right\rangle_{t} \tag{41}\\
& \int_{0}^{\mathrm{t}} \mathrm{H}^{-1} \mathrm{Y}^{-1} \Phi d t^{\prime}=\mathrm{K}_{1}[\Psi(t), T]+\mathrm{D}(T) t
\end{align*}
$$

for $\mathbf{K}_{1}[\Psi(0), T]=0$.
Integrating (40) by parts we get:
$\mathrm{V}(t, T)=\mathrm{V}(0, T)+\left[-1+\left(t+t_{o}\right) \mathrm{Q}\right]\left[\mathrm{K}_{1}+\mathrm{D}(t) t\right]-\mathrm{Q}\left[\mathrm{K}_{2}+\mathrm{L}(t) t+\frac{D t^{2}}{2}\right]$
where $L(t)=\left\langle K_{1}\right\rangle_{1}$ and

$$
\int_{0}^{t} \mathrm{~K}_{1}\left[\Psi\left(t^{\prime}\right), T\right] d t^{\prime}=\mathrm{K}_{2}[\Psi(t), T]+\mathrm{L}(T) t
$$

Substituting in (38) and taking into account (32) as well as the fact that $Q^{2}=0$, we obtain:

$$
\mathrm{U}(t, T)=\mathrm{YH}\left\{\frac{\mathrm{QD} \mathbf{I}^{2}}{2}+[\mathrm{D}-\mathrm{QL}(T)-\mathrm{QV}(0, T)]+\mathrm{K}_{1}-\mathrm{QK}_{2}+\left(1-t_{0} \mathrm{Q}\right) \mathrm{V}(0, T)\right\}
$$

The matrix function U will be periodic in t if $Q D=0$ and $D(\mathrm{~T})=Q$ $[L(T)+(0, T)]$ to the satisfaction of which it is sufficient to do the substitution:

$$
\begin{equation*}
D=0, \quad V(0, \mathrm{~T})=-L(\mathrm{~T}) \tag{42}
\end{equation*}
$$

In doing this we obtain:

$$
\begin{equation*}
U=Y H\left[K_{1}-Q K_{2}+\left(1-\mathrm{t}_{\mathrm{o}} \boldsymbol{Q}\right) \boldsymbol{V}(0, \mathrm{~T})\right] \tag{44}
\end{equation*}
$$

Taking into account definition (41), condition (44) is equivalent to:

$$
\left\langle Y^{-1} \Phi_{k}>_{t}=0 \quad \mathrm{k}=1,2,3, \ldots\right.
$$

In particular, when $\mathrm{k}=1$ from (37) and (45) it follows:

$$
\left.\left[\begin{array}{c}
\frac{d E_{o}(T)}{d T} \tag{46}\\
\frac{d \alpha_{o}(T)}{d T}
\end{array}\right]=\ \mathrm{Y}^{-1}\left[\begin{array}{c}
-\frac{\partial x_{b}}{\partial T} \\
-\frac{\partial p_{b}}{\partial T}+F
\end{array}\right]\right\rangle_{t}
$$

In this way we obtained a system of equations (36), (43) and (46) which in addition serve as a basis of comparison with the results obtained with the non-canonical perturbation approach in energy-angle variables.

Conclusion

We conclude with the important observation that to first approximation the solution in energy-angle variables coincides with the solution to first order in action-angle variables as well as with the solution obtaincd by Kazmak's method.

Indeed if in (29) we substitute $\omega=\omega_{c}=\frac{\partial E(I, T)}{\partial I}$ for $I=I_{o}(T)$, i.c. $\omega=\omega$ as well as $Z=Y\left(\begin{array}{cc}\omega_{c} & 0 \\ 0 & 1\end{array}\right)$, we obtain:

$$
\left[\begin{array}{c}
\omega\left\langle\frac{d I}{d t}\right\rangle \tag{47}\\
\omega\left\langle\frac{d \theta}{d t}\right\rangle
\end{array}\right]=\left[\begin{array}{c}
0 \\
\omega_{o}
\end{array}\right]+\mu\left\langle\mathrm{Y}^{-1}\left[\begin{array}{c}
-\frac{\partial x_{c}}{\partial T} \\
-\frac{\partial D_{v}}{\partial T}+F_{v}
\end{array}\right]\right)_{t}
$$

The comparison of equation (47) with the averaged equation (8) confirms the above conclusion. An analogous conclusion can be obtained through analysis of and comparison with equation (46).

The obtained results contribute in support of the idea that, in particular in the analysis of an oscillator under external asynchronous influence there isn't any significant difference between the non-canonical (non-Hamiltonian) and the canonical (Hamiltonian) methods. It is necessary, though, to mention that a number of other methods cxist in the theory of non-linear oscillations which are not cven to first order completely equivalent with the solution obtained by the considered above three methods.

References
 Hayka, 1971
Whitham, G. B. Linear and Nonlinear Waves, Wiley, 1977
Giacaglia, G. E. O. Perturbation Methods in Nonlinear Systems. Springer, 1979
Лихтен 6 ере А., М. Ли 6 ер мап. Регулярнаяи стохастическая динамика. М. Мир, 1984
 1985
Vander Poi B. On Osciliation Hysteresis in a Simple Triode Generator. Phil; Mag, 43, 700-719

 нслинейньх нолебаний. М., Наука, 1974
9. Малкип, И. Г. Некоторье тадачи тсории нелинейних көлебаний. М. Гостехиадат, 1956
10. Крускал, М. Алиабатнческие иныярианть. М, ИІІ, 1962

N: y feh, A. N. Perturbation Methods, Wiley, 1973
Андронон, A. A., A. A. В зт, С. Э. Хай кын. Теория копебаний. М., Наука, 1981

Szebefy, V. Theory of Orbits: The Restricted Problem of Three Bodies, Acadernic Press, 1982
15. Stiefel, EL, G, Scheifcle. Tincar and Regulat Celestial Mechanics: Perturbed Two-Body Motion Numerical Methods, Canonical Theory. Springer, 1975
16. Roy A. E. Orbital Motion. Bristol, Adam Hatger i. .d., 1981
17. Сам о йл л. К. А. Метод ананиа консбатеивнил снстем пторого порядка. М., Сов, радии, 1976

 526
19. I. uk e, I. C. A Perturbation Method for Non-I.incar Dispersive Wave Problems, Proc. Royal Soc. London, Scr.A, 292, No. $1430,403-412$
20. Ablowitz, M.J., D. J. Benney. The Fvaluation of Multi-Phase Modes for Non-Lintar Dispersive Waves. Stud. Appl. Mah., 49, 1970, No.3, 225-238
21. GogschkovK. A., L. A. Ostrovsky, E. N. Peilnovsky, Some Probiems of Asymptotic Theory of Nenlinear Waves. Proe, IREE, 62, 1974, No.11, 1511-1517
22. Островский, Ј. А., Е. Н. Пелиноеский, Метод усреднения дия несинусоидальғых волд - JAH CCCP, 195, 1970, No.4, 804-806
 15,1998, No.6, 531.544
24. Нелинйины волны: Стохаспинности и турбупениость - В. Сб. сатей, Горжий, 1980
25. Непинеинил волнь: Самоорганияаиия - В: Сб.статей, М., Наука, 1983
26. IІ с м, Лж. Ј. Виеденде ч терио солитонон, М, 1983
27. McLanghlin D. W., A. C. Soot t. Solitons in Action, Academic Press, 1978

НЕЛИНЕЕН ОСЦИЛАТОР ПОД ВЪНШНО АСИНХРОННО ВЂЗДЕЙСТВИЕ: СРАВНЕНИЕ НА КАНОНИЧНИТЕ И НЕКАНОНИЧНИТЕ ПЕРТУРБАЦИОННИ МЕТОДИ ЗА АНАЛИЗ
 Впадимир Дамеов и Пеньр Георгиев

Резюме

В статията е представен неканопичен (нехамилтоновски) пертурбационен метод за изследване на нелинеен осцилатор нод въннно асинхронно въздействие с променливи "енергия-ъгьл". Като нови променииви са в'введени итерационните константи на първоначамното репение Прилагайки последователно метода на каноничните трансформации и получавайкй Функциите, е разработен каноничен метод с променливи "действие-ъгьл" за анализ на същата система в подобни условия. Двата метода се характеризират с извършване още в началото на преход кьм функции с постоянен период, като едва след това се въвеждат необходимите матрицй на функционала. Свцият проблем е изследваи по метода на Кузмак, който се отличава с обратнщя подход - най-напред се въвежда квадратната матрица на функционала, и едва след това се осъществява прехода кьм функции с постоянен период. Направено е сравнение на резултатите, получени при използване на трите гореспоменати метода. Показано е, ще решенията в пэрво приближение водят до еднакви резултати. Конкретно, това заключение е принос към идеята, че няма съществена разлика между неканоничните (нехамилтоновски) и каноничуите (хамилтоновски) методи. Обръща се внимание, обаче, на факта, че другите методи, разработени в рамките на теорията на нелинейните колебания, не могат да дадат дори в първо приближение пьлно съвпадение с решенията, получени при използването на трите гореспоменати метода.

[^0]: ${ }^{\text {4 }}$ Research supported by the "Sciontific Research" National Council at the Bulgarian Ministry of Fducation and Sciences under Contract No H3-1106/01

