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Abstract

A non-canonical (non-Hamilionian) perturbation method Jor study of nonlinear
oscillator under external asynchronous action in variables “energy-angle” is presented. As
new variables, the iteration constants of the original solution are introduced. Consistently
applying the method of canonicul transformations and produycing functions, a canonical
approach in “action-angle™ variables is developed for analysis of the same system under
similar conditions, Both approaches are characterized by \the transition, in the very
beginning, to functions with constunt period and only thepn the necessary functional
matrices are introduced. The same problem is siudied by Kuziak's method, characterized
by the opposite approach: first, a functional square matrix is introduced, and only then a
transition o functions with a constant period is made. A comparison of the results obtained
using the three above-mentioned methods and approaches is made, It is shown that the
solutions in the first approximation lead to equal results. In particular, this conclusion is a
contribution to the idea that there is no essential difference between non-canonical (non-
Hamiitonian) and canonical (Hamilionian) methods, However, attention is drawn 10 the
fact that the other analytical methods developed in the frame of the Theory of Nonlinear
Oscillations could not give, even in the first approximations, ¢ complete coincidence with
the solution obtained using the three above-mentioned methods,

The analysis of oscillations and vibrations reduces to the problem of
a uonlinear oscillator, subjected to cxternal periodic  influence
{perturbation). With the development ol perturbation methods, two main
directions have formed: canonical (Hamiltonian) mectheds and non-
canonical (non-Hamiltonian) methods.

*) Research su pported by the “Scientific Research” National Council at the Buigarian Ministry of
Hducation and Sciences under Contract Ne H3-1106/01
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The methods using mainly canonical transformations in action-angle
variable devcloped earlier. This was in responsc to the needs of colestial
mechanics — see [1]. The method of Lindstedt-Poincare as well as other
methods were developed. The second direction of development of the
perturbation methods are the methods of the averaged Lagrangian and the
averaged Hamiltonian {2]. An overview and a modern presentation of the
canonical methods are given in [3-5].

In the first hall’ of the twenticth century, mainly the non-canonical
(non-Hamiltonian) perturbation methods were developed for the purposc of
analysis of nonlinear electric circuits {6-91. M.Kruskal has developed a non-
canonical theory showing that it can be equivalent to the canonical theory
[10]. The development of these methods is reflected in (4, 11-13].

In the application of perturbation and in particular of the asymptotic
methods a transformation is made 10 a generating solution with constant
period Pe = 27 A number of methods have been developed for this
purpose. In the casc of non-canonical methods, the integration constants of
the generating solution serve as the new variables while in the case of the
canonical methods with the aid of a canonical transformation the treatment
is done in action-angle variables {thcse two approaches are used below). A
third possible method is the regularized Euler method iIntroducing a new
independent variable [14-16]. After the transformation the generating (non-
perturbed) cquation coincides with the equation of the harmonic oscillator.
K.A.Samoylo has suggested the so-called method of non-linear
transformation employing the transformation of the dependent (coordinate)
as well as the independent (lime) wvariables. In this case the gencrating
cquation again coincides with the eguation of the harmonic oscillator.
Finally, a method has becn developed in which the generating solution has a
variable period (dependent on the amplitude). In this case the solution of the
variation equation contains secular terms which at a later stage are
compensated. This method is by G.E. Kuzmak [18] and has been further
developed in a number of works, i.e. [19-23),

We should also mention a number of modifications of the
perturbation methods used for analysis of non-linear waves as well as a
number of perturbation methods based on conservation laws. In the an alysis
of solution phenomena perturbation methods are used which based on the
Inverse Scattering Method (ISM) for equations such as the Korteweg-de-
Vries, the Sine-Gordon, the non-linear Schroedinger equation cte. [26,27].

The present work compares the results obtained through different
perturbation methods. 1t is shown that the solutions using encrgy-angle
variables and action-angle variables (via canonical transformations} and by
Kuzmak’s method to first approximation lcad to equivalent results. This
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confirms the idea that between the canonical and the non-canonical
perturbation methods used in particular for the analysis of an asynchronous
oscillator there isn't any principal difference.

1. Generating solution
Let us consider a generalized nonlinear oscillator described by the
following system of equations:

dx
——p =0
M :ﬁ ¢
32 i
— 1 = F 4 atp by
da+f(XT) #"(dz v, 1, T)

where 0 < 41 <<l is a small parameter, T is sccondary scaling /slow time/,
T=T,+ ut, T =const,dT/dt = 4 The secondary scaling (slow time) could
represent the slow change of the oscillator parameters: i.e. modulation of the
oscillator inductance or capacity, a drift in the supplicd power etc. We will
take f(0,7)=0. We will scek a solution of equation (1) for x belonging 1o
the interval satisfying xf(x,7) > 0.

The solution of the system of equations (1) for g =0 represents the
so called generating solution which we will represent as:
(2) X=X (Et+1,,T), p= PolE i +1,\T),
Here £ = const and ¢, = const are the constants of integration,

We introduce a circular frequency into the geherating sohution (2), as
follows:

2 Lyvax

where IKE,TY=2 J

] dx
[(E,T)’ o AN2E -V (x,T)
is the period in time 1 and Vix,T)= J.,ff(x',T)dx' is/the potential energy,
0

V (xmin ST) = V(-‘xm:lx ‘T) = E(T)
An angle variable ¥ and an integration constant @ = const are
¥ o
b b, p———,
w(ET)  ° w(ET)
Let 0= ¥+ a. We introduce the new functions:

T)

w(E,T)=

mtroduced through the expressions: ¢ =

x=x,(E,0,T)=x,(E, ;
b ( ) ( oET)

P=p,(E,0.T)=p_ (E,

3)

?T)
w(E,T)
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which are periodic in ¥ and @ with period p, = 2z independent of E.
Therefore the derivatives 0x,/06, dp,/06, Ox,JOE and Op JOE are periodic,

Le. they do not contain secular terms.
The system ol equations (1) takes the form:

wE, )2 E0D) g ery =0,
4) a6
w(E,1) e (E:0.T) | F(x,,T)=0,
ad
or
0 _
5) Y[ H z }:o
2 F(xy,T)
where
éxb(Esg!-T‘) dr.b (E,,Q,T)
6 0T — oE o0 _
) YEOD)=| o Fory o)
O a0

The matrix Y is periodic as the period Po = 271s constant and it
satisfies the condition for the absence of secular terms.

2. Perturbation in energy-angle variables

We now perturb equation (1) at u = 0. We vary the constant
parameters taking £ = E(t ) and a=a (1 ).

Taking into account (4) we obtain the following system of cquations,
equivalent to system (1):

(7) %:a}(_E,T); O() =Y(t)+al)
dE
== 0 G, (E,0,1,T,
(8) Al vl O o
40 |w(ET)| "|G(E0,1.T,u)
dt
Ly
where G'J:Y'l _ar
-‘.s' —f?pb + F
ﬂ?}_' ]
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Here, the inverse matrix Yy-1_ |, s s and
" B O

correspondingly det Y =—1/@ , i.e. the condition for the application of the

perturbation approach, det Y =0, oo is valid.
We will scek the solution (7) in the form of an asymptotic series:

E() = E, @)+ uby (1) + 1 E, () + ..

O(t) =8, (6) + 16, (1) + 1°0, (1) +...
Substituting (9) into (8), expanding in the powers of x and equating
__— . , -~ k| g

the coefficients multiplying the same powers of M, we obtain:

&)

dE,
0] [c. |
10 di | _ rk k=0,1,2,3, ...,
(10 d, M{G} i
dt

wherc &, reflects the necessary corrections to o due to different order of
approximation for E in &fE, T ), i.e..
w58, = w(E, + HEy +..+ u* By 4+ ubE, T —@(E, + UE; + ..+ " g, 1
G =Gy By By By ),0,,0, 000 04y T)
Cot = Gop By By By 1,6,,0,,.,04,,T)

Here é,»,;( and és,k arc differential operators which are applied to

the obtained in the previous steps functions.
The complete determination of E, is possible only when the
|

coctficients of order £**' are taken into account. The correction o, (10)
containg E,. This is why we solve the equation E, simultancously with the

equation for €, , i.c. instead of solving (10) we Shoi!ﬂd solve the system of

k-1’
cquations:
E,
%’L: Gy (B v By B i858y 500 Oy 1, T)
b, _ - | .
.—EI—_ = ék-] + G!',k--i (EO ] El peeey Ek—ﬁ ,6’50 ,91 yeaey 9.&'—2‘ I‘ ?— )

In (9) we do the following substitution:
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E () =L ()+U,, (1,T7)

(11) 6, () =a,(t)+U 4 (1,T) k=112,3,...
da, (1)
L s T
dt @l

where U =0, U, = 0. This representation takes into|account that £ is a
slow variable while @ is a quick variable. The qQuantity L,.(¢ } is obtained

only when the coefficients of order 1**! are considercd,

Taking into account equation (11) the perturbation approach reduces
cquation (10) to;

dLy,(T) | QU (1T)

=G, ,T
al , &,T)
w, (T) +T =0, (t,TY+ G, (1,T)

We assume that the right-hand sides of (12) arc expressed in
functions the form of which was found in the previous steps.
From the condition of periodicity of U, and U it follows that:

dL (T) _
(13) — o =(Gn),
o, (T) = (8, + Gy, ),

where < > means averaging with respect to time.
From (12} L, (T ) and @,.(T) are determined. Then we find U
U, from the following system of equations:

5 (T "

_'_%—_)‘:Grk (I,F)__<Gf']\'>f

U, (T '

: 2 ~)=5k t.T) =Gy (t.T) ~ (8, + Gy ),

We should at this point note that instead of s we can use ¥ as an
independent variable. In the case the system of equations (7) and (8) is
equivalent to:

(14) dr 1
dY w(ET)
a 2
(15) av |_|0 [in-l or
_({..9_ ’:1 +)u & —@E—-i- FV
d¥ ar
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The described above perturbation method can be used for the
analysis of cquations (14} and (15).

3. Perturbation in action-angle variables
Above we found a solution in cnergy-angle variables (E, 8 ). The
crucial step was the treatment in variables x, (E, 8 T} and p, (E, 8T,

having a constant period P, = 2n with respect to the angle (quick) variable

&. Here instead of energy E we will use the action 7. Our goal is to transform
canonically in such a way that the new action { = D= consf 10 be a constant

while the new coordinate % = X is lincar in time.
For the case in consideration the generating equation can be
represented with the canonical equations of Hamilton:

dx JH dP O'H (7V
— T — P‘ —_— — T
(16) d &  d X & fuT)

For the transition to action-angic variables and the achievement of
the sct above goal we introduce the gencrating function W(x,1, T3 such that;

P:é’W(x! T), W:&W(x,I,T)
o _ a

Wx, 1,T) = +[ J2E(I,T) - 2V (&', T)dx

Then the new Hamiltonian is:
HUI¥YT)=H{U,T)= A(P,x,Ty= E(T), where E(T) is the energy mtegral,
EM=p%/2+V(E,T).

The period in ¥ must be a constant and equal to 2x. The circular

frequency in the generating solution is:
(17 O LT)=0¥/ ot=2n/ITIE(LT) T],

where the period intime =¥/, is:

A(E,T) g
OF

TI(E,T)=2x =2— j 2E |- 2V (x, T)dx

min X

We ntroduce the new functions:
x=x,.0.T)=x,|EU,T)6,T]
p=p.6,T) = p,[E(,7),0,T]

Taking into account (16)-(18), the system of equations (1) takes the
form:

(18)
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&,.(1,0,T)
20

@, (I,T)[%@Jﬁ(xc,r) =0

-{ ‘_'DC J:O
IR ACAY D
ox . (1,8,T) (T, 8,.T)

h = al 0 _
where 2(1,0.T) Pc(1,0,T) &p.(1,0,T)
al 0
We seck the solution of the perturbed system of equations (1) by

varying the constant parameters / = J(; Jand ¢ = aft ) as:

a}c([’T)I: :]_pc(f’g&?")zo

or

19) z[ 0

@

x=x[1(0),¥(6) +a(t),T]
(20) P=p IO ¥ @) +a@),T]
d’lIJ
==l 10,7} 6 =¥ +a)
't
Substituting (20) in (1) and taking into consideration (19) we obtain;
[ dI _ p ZL0.T)
1) i Z[ 0 ]+Z-1 o |
49 | " | w.(1,T) _ AT
L dr I T |
1 [
— (%, T)—p.
where z-1 _ fUc'HL )w“p , detZ =-1.
PDe O
ol ol
The system (21) can be expressed as:
d
(22) aY[ _ O + Gv(f,g,f,}",ﬂ)
49| (6] |6, (1,6.0,T, )

dt
where §is the necessary adjustment of @..

We seek the solution of (22) in the form:
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=1+l T+ U, 6D+ [ 1,7y + U, 0, .
0 =0,(T)+ 6, (1) +U o (6, D]+ 12 [6,(T) + U, (0,1

23 8 = b, + 1°8, + 1’8, +...
de, (1) dg,(t) dg., (1)
—L =@ (1), L =p(T); =, (T);...
a I e dt 2

where Usy (6,7 ) and U (1,7 ) do not contain secular terms, 1.c.

o i
24 SUn @) =0, (U @T)) =0, k=1,2,3,..
24) <O,} € )>[ <& i € )>£

Substituting (23) in (22), devcloping in a series in the powers of g
and equating the coefficicnts multiplying the same powers of ,uk we gel:

- in front of z°

de,{t S b .
af( ) =@, (T}, where w (T) = @I ,T) the initial value / is taken at
t [¥1e] ale] Q0
the momentt =0, ie.

Loy =1(D),q
i
or G.(¢) = _[wc 0, T + ' Ydt'vconst
o

- in front of 4’

di(T) U, (1,T)
25 oM Py =G, (1,(T),6,(T),6,T.0
(25) o7 Y L, (T),6,(T) )
(26) 0, (T)+ iﬂiﬂ%’i} = 8, + G, (I (T).0,(T),1,T.0)
and accordingly & = [ Py (). T ~ @ Ugo T):]
H |
5, - [(a(. (I, (T)+ | (T) + pU, 8, T - @, (], (T),T}]
2
2

ele.
Averaging the two sides of (25) and (26) and taking into account
{24} we obtain;

@n A7) _

dr

(Glr,@2.0,(),7,0)),
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o (T) = (G, [1.(T),6.("),1,T.0]+ 6,).
(28) 8, = jcol (T, + ut' Ydt'+const

0
The differential equation (26) can be rcsolved, ie. through
successive approximations and development of T in a power series. The
determined by (27) quantity I (¥} is then substituted in (28).

S0, we have come on the approximation as follows:

G o
(29) dt [, _[0} 2zl o |
=| U - |
<{_i£> wa - @_r__ + ,u}:‘r
dr /, ol i

where [a)o =, {IG(T), T]= W+ 5}

i
Uy (1,T) = _HGH —(G,), ki +const
Then a
Uy (,T) = ”GM +38, - (G, + 51_)f 1{1’!'—%—&?0?15’.?

0

4. Solution by Kuzmak’s method in matrix form
In the two methods developed above we first transformed to
functions with a constant period p, =27 and only then introduced matrices

Y and Z. This is why Y and Z turned out to be periodic. With Kuzmak’s
method [18} one proceeds in the reverse order; first, the functional square
malrix E is introduced and only then the transformation to constant period
functions is performed. As a result, E is not periodic but contains secular
terms, In the analysis of the perturbed equation these terms compensate each
other and the final solution is periodic. Here, we will develop a version of
Kuzmak’s method on the basis of a matrix presentation in application to an
asynchronous non-lincar oscillator.

The generating solution of the system of equations (1) when u =0 is
assumed 10 be in form (2).

We introduce the matrix:

&u(E, i .trl, j") &G(E, f + ta, T)

% = E,[ +to, 1) = E a(f‘!'t*’)
(30) ( 3 ) PE, 1 +1,T)  DoE,tH+1,T) |’
CE It + 1)

so that the following variation equation is satisfied:
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a': 0 —']
3D “—~+BE=0, where B=| & .

ot o O
Besides
(32) E=YHII-(#+1,) Q],
i@ 0 0
where H:[ } Q=7 HLE,T)U
0 w Of)E

ThendetE=-land E™(E,t+1,,T)=[1+(t+¢,)QHY .
The solution of the perturbed system of equiuions (1) we scek in the
form: |
x=x, [E(T), Y1)+ a(T)T1+ puU,, (T)
P =py, LET), ¥+ oT),T) + uU,, (17T)
where the constant parameters Y, E, o, 0, and d‘{’,i’dt = 0(E, T) are varied.
We lay down conditions U,, and U, not to contain secular terms,

The following equation is satisfied: ‘

dx » dE o, L U Vs '
dr|_| d8 |, dT dT ot oT
dp |=| dp, |THY| ge |TH op, U, — OU,,
== = = =i -t —
dt do dT dr ot or

We also introduce the matrix: |

U U,, (+7)
aitl = U,(t,T)

We seek the solution in the form of an asymptotic series:

W ()= (t)+ pu¥, (1) + wEY L () +
a(T)=a ,(T)+pa (T)+ pla, (T)+.

0 (t,T)=6,(t,T)+ ub (t,T) + ,u?@zu,r) ¥
(33) 9&({,T)=gﬂk(.‘?)+a’k(f). k.=0,!1,2,...
E(T)=E (T)+ pE(T) % BHPE(T) + ..
HUa(t,T) = pU (t,T)+ p?U ,(t,T) + ..

Ul T = {U’““’T)J,
Uu(r,T,)

We set as a goal that U a5 o k2 MUSt not contain secular terms.
The generating solution has the form (5).

E = 128w
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Substituting (33) in (1) and taking (5) into account developing in a
series in the powers of # and equating the coefficients multiplying the same
powers of ,uk, wC get:

- infrontof 4°
a¥,®

dt

(34) =w(E,,,T)

I
d¥,= [@(E,,.T, + pr' ¥t

G

wherc EOO 1s the initial value of E, (T) at thc moment ¢ = ( and when 7' =
To:

- in front of ¢

(35) @"—(}(}ET—)Jr BU +T)=®,; x=123,..

where D, = col{ @y, Dy5,) a¥, @) =0, (To+ut), k=123..
1

(36) Wilt) = J&:(T + it )dt'

O
& are the necessary adjustments of o

o[E (T),Ti-olE,,,T]
5.(T, + ) = 6,1y = AE T T1 - OLE,, ]
7,
ST, + 1) = 8,(T) = EEEU(T) + BT+ ..,+ﬂ"—1Ek 1 (T}J—kwlii‘g(?‘) LB (TY + 0+ g 'ZE,C_Q(T_)J
i
k=234,.....
In particular, for the coefficient multiplying 4 we obtain:
AUz, T
——(——) +BUi(s,T) = @1,
ot
where
dE, )] [ o4
; T ar
(37) D, =-Y af s
da(I) |*|_an, , .
dT or
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dx, :
Here F :F( ;‘L sxb}r&T}O).
We seek the SOIl;ltiOH of equation (35) in the form:
(38) U, ¢,T)=EV&,T), & =123,..
where
_ Vi @,T)
vV, @, T)=| M . k=123,
Vi (8,T)

Substituting (38) into (35) and taking (31} inito account we get:

1
(39) Ve T) =V (0.7) + [E7 (B, 140", YO, T)dr
0

From equation (14) it follows: |

!
(40) V(t,T) = V(0,T) + j [1+ (t'+1, )QIH 'Y gy
0

I
=V(O,7) + [[1+ '+, )Q]{;f:—'n{1 + D(T)1 [3de'
% f
where matrices D(T) and K, have been introduced tl?rough the relations:

1) D(T) = (H"'Y"®) |

t

L
[HY ' ®dr'= Ki[® (1), 7]+ DTt
0 |
for K; [W(0),T]=0. |
Integrating (40) by parts we get:

2
V(.T) =VO.T)+[-1+(t+1,)QIK, + D] - QK, + L@H%}
where L(1) = < K > and

jKI[‘{’(r'),T]thKz[LP(r),T]+L(T)z
0

Substituting in (38} and taking into account (32) as well as the fact
that Q2=O, we Obtain:
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QD

2
U@ 1) = YH{-—2——+[D~QL(77—QV(0,73]I+K1 ~QR+(1-0QV(O,7)]

The matrix function U will be periodic in t if QD=0 and D(T) = Q
[L(T) + (0,T)] to the satisfaction of which it is sufficient to do the
substitution:

(42), (43) D=0, V(0,T)=- L(T)
In doing this we obtain:
(44) U=YH [K;- QK, +(I - t, @)V (0,T)]
Taking into account definition (41), condition (44) is cquivalent to;
<Yl@p>,=0 T .

In particular, when k = 1 from (37) and (45) it follows:

dE ,(T') S o
i dT Y ar
(46) 7y | =
da,(T) _op gl
dT or t

In this way we obtained a system of equations k36), (43) and (46)
which in addition serve as a basis of comparison with the results obtained
with the non-canonical perturbation approach in energy-angle variables,

|

Conclusion _

We conclude with the important observation that to first
approximation the solution in energy-angle variables coincides with the
solution to first order in action-angle variables as well as with the solution
obtained by Kazmak’s method.

e e , gE(L,T)
Indeed if in (29) we substitute @ = @, = __(5’7_ for I =1 (T),
£
: - w, 0 .
1Le. @ = Mo aswellas 7 - Y( 0“ J , we obtain:
dl -
A2 o1 ] 2
(47) o +ul Y or
{ J g P

Ao\ | " | w | |
@ — o ———+ F |/
<d!>_ ar ¢t

The comparison of equation (47) with the averaged equation (8)

confirms the above conclusion. An analogous conclusion can be obtained
through analysis of and comparison with equation (46).
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The obtained results contribute in support of the idea that, in

particular in the analysis of an oscillator under external asynchronous
influence there isn’t any significant difference belween the non-canonical
(non-Harmiltonian) and the canonical (Hamiltonian) methods. It is
necessary, though, to mention that a number of other methods exist in the
theory of non-linear oscitlations which are not even to first order completely
equivalent with the solution obtained by the considered above (hree
methods,
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HEJIMHEEH OCUAJIATOP IOX BLHINHO ACUHXPORHO
Bb3JENCTBUE: CPABHEHUE HA KAHOHWUYHUTE A
HEKAHOHUYHATE NEPTYPEAIINOHHU METOAH 3A

AHAJIN3

Bracumup [larzoe u Hemrep Teopueq
Peszrome

B cratmsra e npencraBeH HeKapoNMueH (HEXaMUATOHOBCKH)
nepTypballtoneH MeTom 3a W3CAeABaHe HA HeTMHEeH OCHURATOP 1I0J
BBHHUIHO ACHHXPOHHO BB3JACHCTBUC ¢ NPOMEHAHBH “CHEPrus-srun”. Kato
HOBY  NPOMCHNABHM  Ca BBBEACHHM HTEPALMOHHHTC KOHCTAHTH Ha
IbPBORAYANHOTO pemenue. [lpumarafiku nocnefopaTesHO Metoma Ha
KQHOHWYANTE TPaHCQOPMALMY 1 NONYEaBaNiKH yHKIHuTe, € paspaboTes
KAHOHMHCH METOX C NPOMEHAMBY ~ACHCTBUE-BIBN” 32 AHANM3 HA ChIATA
cuctema B nonobHu yenmosms. JlBata MeToma ce XapakTepusupar ¢
USBLDINBAHE OlIE B HAYalOTO HA TPEXOX KbM (YHKIHHM ¢ [OOCTOSHeH
TICPHOL, KATO CHBA CJICJ TOBA C€ BBBEXEAT HEOOXONUMHTE MaTpHUH Ha
$ynknuonana. Chuwsit npobiem e u3cHenBair Mo metona Ha Kysmaxk, xoiiro
C¢ OTRMHABA C OGPATHEUA TOAXON - HAR-HAnpPeH ce BLBENIA KBaJIpaTHATA
MaTprua Ha GYHKUMOKANR, M /B2 CIIeX TOBE G OCBHIIECTRABA [IPEXORa KbM
GYHKIHH ¢ MOCTOAHEH TIGPHOX. Harpasesio e cpasnenue na pesynrarure,
[IOIyHCHH IPU M3MOM3BAHE Ha TPUTE TOPECIOMEHATH MeToda. [1okaszano e,
€ pelueHMaTa B NBPBO NPUOJIMKEHUE BONAT AO €AHAKBU DE3YITATH,
Kowukperno, ToBa saxmouenue e IPUHOC KBM MAEATA, Y€ HAMA CHUIECTBENS
pasiiika MEXIY HREKAHOHMYHMTE (HEXaMUNTOHOBCKH) M KAHOHUUHHTE
(XaMMUNTOHOBCKH) MeETOMH. Obpbia ce BHUMakue, obave, Ha daxra, ue
APyr#Te METOAH, paspalOTeHH B DAMKHUTE Ha TEOPHSTA HAa HeRHeHWTe
KONeDaHuA, HE MOTAT Ha JlagaT xOpd B TBPBO NPHOMVKEHVE MIBIHC
CBRIANICHUE C pCUIEHWATA, [ONYYEHH I[IpU M3NON3BAHETO Ha TPUTE
rOpecTiOMeHaTH METORA.
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